
International Journal of Heat and Mass Transfer 52 (2009) 1149–1157
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate/ i jhmt
Robust reduced order modeling of heat transfer in a back step flow

D. Alonso a, A. Velazquez a,*, J.M. Vega b

a Aerospace Propulsion and Fluid Mechanics Department, School of Aeronautics, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain
b Applied Mathematics Department, School of Aeronautics, Universidad Politécnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 February 2008
Available online 30 October 2008

Keywords:
Singular value decomposition
Proper orthogonal decomposition
Reduced order models
Genetic algorithm
Backward facing step
Heat transfer
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.09.011

* Corresponding author. Fax: +34 913366351.
E-mail address: angel.velazquez@upm.es (A. Velaz
We present a method to obtain reduced order models to calculate steady states in thermal systems of
industrial interest. The method could be regarded as an evolution of the standard proper orthogonal
decomposition (POD) method, in which the reduced model is obtained through standard Galerkin projec-
tion (whose application exhibits well known difficulties) on previously obtained POD modes. Instead of
relying on a Galerkin projection, we use a genetic algorithm (GA) to minimize a conveniently defined
residual for the (continuity, momentum, and energy) equations and boundary conditions. The method
and its practical application are illustrated on a test problem that describes heat transfer in the recircu-
lation region downstream of a backwards facing step.
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1. Introduction

A common situation in practical industrial applications related
to product development is the need to perform fast calculations in-
side a space of design parameters. In mature, very competitive,
industrial sectors like aerospace or automotive, this need is moti-
vated by the drive to generate products having good technical per-
formance within design cycles that are as short as feasible. Thus,
time is a critical aspect of industrial competitiveness because
shortening the time to market may provide a leading economic
advantage during the product life cycle.

A possible way to shorten design cycles consists of replacing
experiments by computational fluid dynamics (CFD) calculations.
Now, if the number of parameters is not small and a fully nonlinear
behavior is involved, then obtaining approximate solutions is not
trivial unless a large number of numerical calculations is per-
formed. For instance, if we consider a 2D cooling system, such as
a micro-heat-exchanger, we might be interested in determining
the global response of the system (through, e.g., the pressure drop
from entrance to exit, the Nusselt number, and a property of the
flow like the size of a recirculation bubble) in terms of the Reynolds
and Prandtl numbers, the temperature difference inside the sys-
tem, and a geometric parameter such as the aspect ratio. If we
compute five to ten values for each parameter, the whole study re-
quires 54–104 simulation runs. This is not to mention the case
where additional geometry design parameters, such as those defin-
ing the shape of the system, are accounted for, or the case where a
ll rights reserved.
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full 3D configuration is considered. Thus, the cost advantage asso-
ciated to the use of CFD may be offset by the sheer number of
numerical simulations needed. A possible way out of this dilemma
is, of course, to compute a limited, well selected number of cases
and to interpolate between them. However, the problem with
interpolation is that accuracy degrades when either more than a
few parameters are involved or the distance between available
points in the parametric space is not small enough. This can be
overcome somehow if interpolation is made on global modes
resulting from either proper orthogonal decomposition (POD) [1]
or high order singular value decomposition (HOSVD) [2] which will
be done below as a part of the analysis. HOSVD [3] is an extension
to tensors of classical SVD [4]; note that such extension is not
straightforward and involves some subtleties [5].

An alternative method to interpolation is the use of reduced
models based on approximate mathematical modeling techniques,
which might be a convenient way to achieve the above mentioned
practical industrial goals. These reduced models are usually ob-
tained via a standard Galerkin projection on a set of previously cal-
culated modes, through Proper Orthogonal Decomposition (POD).
The problem is that Galerkin projection leads to reduced order
models that need some kind of artificial stabilization, a difficulty
that is still unsolved nowadays, especially in open flow systems
and non-selfadjoint problems.

The objective of this paper is to present a method with an im-
proved performance on industrial product development. Our
method consists of three steps:

(1) A set of snapshots is selected with steady states of the system
for representative values of the parameters, calculated using
CFD. With these, POD machinery is a applied to calculate the
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Nomenclature

Latin symbols
aj

i ith amplitude of the jth variable
BCj acronym for the jth imposed boundary

condition
~cp heat capacity
Ej acronym for the jth imposed squared integral equation
~h channel height
Ki ith mode of the thermal conductivity
m total number of modes
Mi ith mode of the molecular viscosity
n number of modes taken for all variables when

n1 ¼ n2 ¼ � � �
ni number of modes taken for the ith variable
NG number of generations
NI number of individuals
Nu Nusselt number
LR attachment length
p dimensionless pressure
PD pressure drop
Pr Prandtl numbereQ 0 heat flux
Rij covariance matrix
Re Reynolds number
R residual function
T; eT dimensionless and dimensional temperature

u; ~u dimensionless and dimensional horizontal velocity
components

Ui ith mode of the horizontal velocity component
v; ~v dimensionless and dimensional vertical velocity compo-

nents
x; y horizontal and vertical coordinates

Greek symbols
ci ith eigenvalue of the covariance matrix
@x; @y partial derivatives with respect to x and y
D Laplacian operator
j; ~j dimensionless and dimensional thermal conductivities
j1, j2 coefficients of dimensionless molecular viscosity poly-

nomial
l dimensionless molecular viscosity
~l molecular viscosity
l1, l2 coefficients of dimensionless molecular viscosity poly-

nomial
~q dimensional density
X spatial domain

Superscripts
inlet value at the inlet section
max maximum value
wall value at the wall
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associated POD modes, and a first approximation of the solu-
tion based on SVD plus interpolation. The latter is to be used
as initial guess in step 3 below.

(2) The flow variables (e.g., velocity components, pressure, and
temperature) are expanded in terms of the POD modes.
These expansions are substituted into the governing equa-
tions (e.g., continuity, Navier–Stokes, and energy equations),
which are squared, integrated over the fluid domain, and
added to the squares of the boundary conditions, to calculate
a residual that should be minimized.

(3) The coefficients in the expansions above are called ampli-
tudes of the modes, and are calculated as the minimizers of
the residual, using a genetic algorithm (GA).

The main new ingredients in our method are in steps 2 and 3,
which are more flexible and robust than their counterparts in clas-
sical POD + Galerkin methods.

Rather than formulating the method only, we both describe the
method and illustrate its practical application using a test problem,
namely a laminar flow past a backward facing step with temperature
dependent viscosity and thermal conductivity. With these, we also
intend to assess the robustness and accuracy of the method.

The use of SVD-based methods for studying thermal problems is
not new. In particular, these methods have been used in inverse
heat conduction problems for various purposes; namely, (a) to esti-
mate unknown boundary conditions such as surface heat flux, sur-
face temperature, and heat transfer coefficients [6]; (b) to control
spatial and temporal instabilities through regularization [7]; and
(c) to filter noisy temperature data [8]. And SVD has been also used
to deal with multicomponent thermal systems, whose treatment
involves a large number of differential equations [9].

Concerning the use of POD to obtain reduced order models for
the Navier–Stokes equations, see a recent review by Burkardt et
al. [10]. The stability of reduced models obtained via Galerkin
projection on POD modes is an important issue since it has long
been recognized that these methods, attractive as they are, need
stabilization schemes to yield acceptable solutions. This central
question is discussed in detail by Sirisup and Karniadakis [11],
who point out that an erroneous state of the POD-reduced order
model equations can be obtained as a large time behavior of the
system even if the correct state is used to initialize the simula-
tion. This means that the numerical solution of the reduced order
model may eventually drift to a spurious state. Several stabiliza-
tion methods are presented and tested in references [11,12]. See
also a ‘calibration method’ by Galleti et al. [13], whose application
requires in practice to solve an adjoint problem. An alternative
‘calibrated method’ has been proposed by Couplet et al. [14] that
determines the free parameters of the POD system via the solu-
tion of a minimization problem. Approaches based on something
more than Galerkin projection have also been proposed. In partic-
ular, Sirisup et al. [15] use de concept of projective integration
[16], which consists of performing short burst of full direct
numerical simulation to estimate the evolution of the flow
dynamics. The use of POD based formulations to improve the effi-
ciency of numerical simulation methods has also been proposed
and studied by Tromeur-Dervout and Vassilevski [17] and Rathi-
nam and Petzold [18]. Finally, a method that combines SVD and
GA within the development of a fuzzy network has been reported
by Nariman et al. [19].

The remaining of the paper is organized as follows. The method
we propose is presented in Section 2, using the above mentioned
test problem. The main results are given and discussed in Section
3. The paper ends with some concluding remarks, in Section 4.
2. The test problem and the reduced model

The method presented in this paper does not depend on the
specific problem under consideration. However, for the sake of
clarity we shall describe the method applying it to a specific test
problem, which is described first. Such illustration is made with
two ideas in mind:
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� The application is considered only to illustrate the method. We
do not intend to give a complete study of the test problem,
which on the other hand includes various interesting bifurca-
tions and instabilities. Thus, the parameter range will be
selected such that only one flow topology is present.

� Our aim is to describe the method and illustrate its advantages
concerning robustness and flexibility. The method can be further
improved in various ways (see Section 4), but such improvement
is beyond the scope of this paper.

2.1. The test problem

As a test problem, we have chosen the nonisothermal, two-
dimensional flow past a backwards facing step; see Fig. 1. The flow
is laminar (the Reynolds number is moderate, not larger than 500)
and steady. The temperature of the incoming flow is eT inlet ¼ 293 K
(with tildes denoting hereafter dimensional quantities) and all
walls are adiabatic except for a portion of the bottom wall, which
exhibits a length that is 10 times the step hight and is located
downstream of the step (Fig. 1), where temperature is maintained
at eT max ¼ 353 K. Such temperature variation implies that if the
working fluid is water, then its viscosity changes by a factor of 3
[20]. Thus, it is necessary to take into account dependence on tem-
perature of viscosity (and of thermal conductivity, which also var-
ies significantly). The assumption of 2D flow seems justified
because previous studies on the constant viscosity case (e.g.,
[21,22]) have shown that 3D instabilities occur at Reynolds num-
bers in the range of 700–997, depending on thermal boundary
conditions.

The spatial coordinates, x and y, the velocity components, u and
t, and the pressure p are made dimensionless using twice the
height and the velocity at the inlet section, 2~hinlet and ~uinlet, respec-
tively, and nondimensional temperature is defined as
T ¼ ðeT � eT inletÞ=ðeT max � eT inletÞ. The governing equations (continuity,
horizontal and vertical momentum conservation, and energy con-
servation) are

@xuþ @yv ¼ 0; ð1Þ

u@xuþ v@yuþ @xp� 1
Re

lDuþ 2@xl@xu½

þ@ylð@yuþ @xvÞ
�
¼ 0; ð2Þ

u@xvþ v@yvþ @yp� 1
Re

lDvþ 2@yl@yv
�

þ@xlð@xvþ @yuÞ
�
¼ 0; ð3Þ

u@xT þ v@yT � 1
RePr

jDT þ @xj@xT þ @yj@yT
� �

¼ 0; ð4Þ

where @x and @y denote the partial derivatives with respect to x and
y, respectively, and D ¼ @2

xx þ @
2
yy stands for the Laplacian operator.

The (inlet) Reynolds and Prandtl numbers are defined as
Re ¼ 2~qinlet~hinlet~uinlet=~lð~T inletÞ and Pr ¼ ~cp ~lðeT inletÞ=~jðeT inletÞ, respec-
tively, where ~q and ~cp denote density and heat capacity, respec-
tively. Dependence of dimensionless viscosity and thermal
Fig. 1. Sketch of the
conductivity on temperature is assumed quadratic [20], and ac-
counted for in nondimensional terms as

l � ~lðeT Þ=~lðeT inletÞ ¼ 1� l1 � T þ l2 � T
2; ð5Þ

j � ~jðeT Þ=~jðeT inletÞ ¼ 1þ j1 � T � j2 � T2; ð6Þ

where (in the temperature range we are considering in this paper,
293 K < ~T < 353 K), the coefficients are

l1 ¼ 1:1292; l2 ¼ 0:49036; j1 ¼ 0:1572; j2 ¼ 0:04704:

The boundary conditions are as follows. At the inlet section, x ¼ 0,
we impose a Poiseuille-like flow and a temperature equal to the
coolant temperature, namely

uðyÞ ¼ �24 y2 � y
2

� �
; vðyÞ ¼ 0; @xp ¼ �48

Re
; T ¼ 0; ð7Þ

while at the outlet section, x ¼ 15, we require that

@xu ¼ @xv ¼ @2
xxp ¼ @xT ¼ 0: ð8Þ

At solid walls we impose no slip and assume that the central part of
the lower wall exhibits a nondimensional temperature T ¼ Twall,
while the remaining part of the lower wall and the upper wall are
thermally insulated. Namely,

u ¼ v ¼ 0; T ¼ Twall ð9Þ

if 5 < x < 10 and y ¼ 0, and

u ¼ v ¼ 0; @yT ¼ 0 ð10Þ

if either 0 < x < 5 and y ¼ 0:5, or x ¼ 5 and 0 < y < 0:5, or
10 < x < 15 and y ¼ 0, or 0 < x < 15 and y ¼ 1.

Note that we are giving boundary conditions for pressure at
both the entrance and the exit of the domain, which in principle
are not necessary because pressure is just a Lagrange multiplier
in incompressible Navier–Stokes equations, which is needed to
compensate for the (extra) continuity equation. But the boundary
conditions for pressure are just the ones that match with parallel
flow at both the entrance and exit, namely those compatible with
the boundary conditions for the velocity components and the hor-
izontal momentum equation when the additional condition
@xxu ¼ 0 is imposed, as is readily seen. We give the pressure
boundary conditions explicitly because these are convenient to
improve precision in the analysis of next section. Also, these
boundary conditions are necessary in the pseudo-compressibility
approach we have followed to numerically integrate the equa-
tions (see Refs. [23,24] for details); that approach also needs a
boundary condition for pressure at solid walls, which is obtained
integrating (near the wall) the momentum equation in the direc-
tion perpendicular to the wall (except at the corners, where the
direction that bisects the corners is considered), with one sided
(into the flow domain) derivatives, and imposing no slip at the
wall.

Now, in order to carry out CFD computations, we use a second
order, finite point flow solver that is described elsewhere [23,24].
Steady states are calculated solving a time marching formulation
fluid domain.
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based on a pseudo-compressibility approach, as stated above. The
mesh is Cartesian, with 32,051 points and a (nondimensional) dis-
tance between points of 0.02.

The simplest non-attached steady state of the system shows a
unique recirculation bubble just behind the step, as sketched in
Fig. 1. In isothermal conditions, such steady state can be somewhat
characterized by means of the length of the recirculation bubble (see
Fig. 1), LR, and the pressure drop from entrance to exit, PD. In non-
isothermal conditions we shall also consider the Nusselt number,
defined as

Nu ¼
eQ 0

2ðeT max;wall � eT inletÞ~jðTwallÞ~hinlet
�
Z 10

5
@yTðx; 0Þdx; ð11Þ

where eQ 0 is the (dimensional) heat flux in the nonadiabatic part of
the lower wall, and j is the dimensional thermal conductivity. This
simple steady state exists for intermediate Reynolds numbers, as
Re1 < Re < Re2, where Re1 � 5 and Re2 � 600 in isothermal condi-
tions. The recirculation bubble disappears as Re approaches Re1

and splits into several bubbles as Re approaches Re2. Since the test
problem is only intended to illustrate our method, we shall concen-
trate in the intermediate values of Re and will avoid approaching
the bounds Re1 and Re2:

2.2. Snapshots, POD modes, and SVD plus interpolation

The snapshots must be representative of the parameter range
we intend to cover, and will be selected accordingly in Section 3.
Each snapshot gives the steady state of the system for a specific
set of values of the parameters, which requires to give the velocity
components, pressure, and temperature, namely

ðuk; vk;pk; TkÞ for k ¼ 1; . . . ;N: ð12Þ

These snapshots allow us to obtain the POD modes, which are cal-
culated independently for each variable (a main difference with
the standard POD + Galerkin approach) using standard formulae.
For instance, POD modes for the horizontal velocity are given by

Uj ¼
XN

k¼1

ak
j uk: ð13Þ

The coefficients ak
1; . . . ;ak

N are the eigenvectors of the positive defi-
nite, symmetric (N � N)-matrix R, known as the covariance matrix,
defined as

Rij ¼ huiðx; yÞ;ujðx; yÞi ð14Þ

in terms of the L2-inner product

huiðx; yÞ;ujðx; yÞi ¼
Z

X
uiðx; yÞujðx; yÞdxdy; ð15Þ

where X stands hereafter for the following spatial domain

X ¼ fðx; yÞ 2 R2 : 5:5 < x < 10:0 < y < 1g: ð16Þ

This domain has been chosen such that it (a) covers most part of the
recirculation bubble and (b) avoids that corner region on the upper
part of the step, where CFD calculations show largest localized er-
rors do to a singularity in the velocity gradient (see our remarks
on this point in Section 4). Note that we are not taking as X the
whole fluid domain, as usually done in standard POD + Galerkin
approaches.

Now, if the expansion (13) is truncated to n 6 N terms, then the
relative error in terms of the L2-norm associated with (15) is
bounded by

jerrorj 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼nþ1ciPN

i¼1ci

vuut ; ð17Þ
where c1 P . . . P cN P 0 are the eigenvalues of the matrix (14).
This gives an a priori estimate of the number of POD modes that
must be retained to obtain a fixed error. The POD modes are now
used to write down the flow variables as

uðx; yÞ ¼
Xn1

i¼1

a1
i Uiðx; yÞ; vðx; yÞ ¼

Xn2

i¼1

a2
i V iðx; yÞ; ð18Þ

pðx; yÞ ¼
Xn3

i¼1

a3
i Piðx; yÞ; Tðx; yÞ ¼

Xn4

i¼1

a4
i hiðx; yÞ; ð19Þ

where the coefficients a1
i ; � � � ; a4

i are the amplitudes of the modes;
these are unknowns to be determined below. Although the number
of modes in each variable needs not be the same (see comment on
this point in Section 4), for simplicity we assume hereafter that

n1 ¼ � � � ¼ n4 ¼ n: ð20Þ

Let us now calculate a first approximation of these amplitudes for
arbitrary parameter values using SVD + interpolation, which requires
to take into account the parameter values for which the N snapshots
(12) have been calculated, namely

Re1; . . . ;ReN ð21Þ

if only one parameter (the Reynolds number) is considered, or

Re1; . . . ;ReN1 ; Twall
1 ; . . . ; Twall

N2
; ð22Þ

with N ¼ N1 � N2, if dependence on a second parameter (the wall
temperature) is also accounted for. We intend to calculate the
amplitudes of the modes in terms of these parameters, namely

aj
i ¼ aj

iðReÞ or aj
i ¼ aj

iðRe; TwallÞ; ð23Þ

which will be done in two steps: (a) at the parameter values asso-
ciated with the snapshots, (21) or (22), the amplitudes of the
modes, aj

i ¼ aj
iðRekÞ or aj

i ¼ aj
iðRek; T

wall
l Þ, are calculated just project-

ing the snapshots (12) into the POD basis; and (b) at the remaining
(intermediate) values of the parameter(s) the amplitudes of the
modes (23) are calculated using cubic (spline) interpolation on
the amplitudes aj

i.

2.3. Preprocessing to calculate the residual

As anticipated above, next step consists of calculating the
amplitudes of the modes (i.e., the coefficients in the expansions
(18), (19)) minimizing a conveniently defined global error. This
global error will be called the residual below, and will be obtained
(in rough terms) substituting the expansions into the governing
equations and boundary conditions, squaring, and integrating. In
a first attempt, we set

Residual ¼
X4

l¼1

Z
X
ðElðx; yÞÞ2dxdyþ

X3

l¼1

ðBClÞ2; ð24Þ

where the spatial domain X is as defined above, in (16), E1; . . . ; E4

are the left hand sides of Eqs. (1)–(4), and

BC1 ¼
Z 1

0:5
uð0; yÞdy� 1

2
;

BC2 ¼
1

0:84� 0:66

Z 0:84

0:66
@xpð0; yÞdyþ 48

Re
;

BC3 ¼
Z 10

5
Tðx;0Þdx� 5Twall

ð25Þ

account for the nonhomogeneous boundary conditions in (7)–(9).
Here, we are taking into account that the u-profile at the entrance
(x ¼ 0) is Poiseuille for both the POD modes and the solution we
are approximating, and that similarly, the pressure gradient at
x ¼ 0 and the temperature at the nonadiabatic part of the wall are
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both constant. Thus, imposing each boundary condition only re-
quires to impose one integral condition (instead of imposing the
boundary condition pointwise, as should be done in principle). Note
that the contribution of the pressure boundary condition at the inlet
section, BC2, is calculated only in the subinterval 0:66 < y < 0:84
thus avoiding two regions near the wall where localized numerical
errors on the pressure gradient are present; see remark on this
point in Section 4.

Now, calculating the residual (which should be done at each step
of the minimizing process, see next section) requires to calculate
the various integrals appearing in (24), which is fairly expensive
numerically. Computational cost can be much lowered taking
advantage of the fact that nonlinearity is algebraic (in fact, cubic),
which allows a preprocessing that requires to calculate the inte-
grals just once. The resulting expression of the residual would be

Residual ¼ Rða1
1; . . . ; a1

n; . . . ; a4
1; . . . ; a4

nÞ; ð26Þ

where R is a positive definite, sixth order polynomial in m ¼ 4� n
variables (the amplitudes of the modes), which exhibits ð4� nÞ6

(roughly) coefficients that should be calculated and stored. Now,
the polynomial is sixth order because it contains the square of cubic
(diffusive) terms in Eqs. (2)–(4), which are cubic because l or j de-
pend quadratically on temperature. That cubic nonlinearity can be
avoided modifying the procedure in two steps: (a) Eqs. (5) and
(6), namely

l� 1þ l1 � T � l2 � T
2 ¼ 0; j� 1� j1 � T þ j2 � T2 ¼ 0; ð27Þ

are kept as equations instead of substituting them into (2), (3); and
(b) l and j are added as state variables. Step (a) requires to redefine
the residual as

Residual ¼
X6

l¼1

Z
X

Elðx; yÞð Þ2dxdyþ
X3

l¼1

BClð Þ2; ð28Þ

where E1; . . . ; E4 and BC1;BC2;BC3 are still as in (24), and E5 and E6

are the left hand sides of the new equations (27). And step (b) re-
quires to also calculate POD modes for the new variables, which
should be expanded as

lðx; yÞ ¼
Xn

i¼1

a5
i Miðx; yÞ; jðx; yÞ ¼

Xn

i¼1

a6
i Kiðx; yÞ: ð29Þ

Replacing these and (18), (19) into (28), we obtain (cf. (26))

Residual ¼ Rða1
1; . . . ; a1

n; . . . ; a6
1; . . . ; a6

nÞ; ð30Þ

where now the function R is a fourth order polynomial in m ¼ 6� n
variables, which requires to calculate and store ð6� nÞ4 coefficients,
instead of the ð4� nÞ6 coefficients we had before. Eq. (30) can also
be written as

Residual ¼ R0 þRi
1;ja

j
i þR

i1 i2
2;j1 j2

aj1
i1

aj2
i2
þR

i1 i2 i3
3;j1 j2j3

aj1
i1

aj2
i2

aj3
i3

þR
i1 i2 i3 i4
4;j1j2 j3j4

aj1
i1

aj2
i2

aj3
i3

aj4
i4
; ð31Þ

where we are using Einstein summation convention (repeated in-
dexes are summed over, for i; i1; . . . ; i4 ¼ 1; . . . ;n and
j; j1; . . . ; j4 ¼ 1; . . . ;6). The various coefficients depend only on the
parameters and are given in terms of integrals of products of the
snapshots. For the sake of brevity, we omit here the expressions
of the various tensors appearing in (31), which on the other hand
are somewhat sparse, namely the coefficients are zero for many
combinations of the indexes. For instance, R

i1 i2 i3 i4
4;j1 j2 j3 j4

has at most
19� n4 nonzero elements, instead of the ð6� nÞ4 elements that
could be involved in this tensor.

2.4. The genetic algorithm

Now, we use a genetic algorithm (GA) to obtain the global min-
imum of the residual defined in Eq. (31), which depends on
m ¼ 6� n variables (the amplitudes aj
i). The algorithm uses NI

(to be selected below, in Section 3.1) individuals, each of whom
exhibits m chromosomes (the amplitudes aj

i); each chromosome
in turn consists of 8 genes, which are the bits that codify this par-
ticular amplitude. Fitness of an individual is defined according to
the value of the residual (31) associated to their genes. The GA al-
lows the individuals to compete between themselves, mutate, and
breed, as follows. The algorithm uses an initial number, 0:1� NI ,
of equal individuals with the genes obtained by SVD + interpola-
tion, and the remaining 0:9� NI with randomly chosen genes.
At the beginning of every generation the individuals are ordered
according to their fitness. The first 0:1� NI are called elite individ-
uals, which survive to the next generation no matter what the re-
sults of the following operations could be. The remaining
individuals compete randomly between them, namely two ran-
domly chosen individuals compare their fitness and the more fit
survives; such competition is made 0:72� NI times. Then, the sur-
vivors cross their genes in randomly chosen pairs to produce
0:9� NI new individuals whose genes are chosen randomly from
the genes of the parents. One out of every 1500 of the genes of
each new individual suffers a further random mutation. The
resulting new individuals plus the elite individuals form the pop-
ulation for the next generation. The whole process is repeated for
NG (to be selected below, in Section 3.1) generations. At the end,
the individual with the smaller fitness is considered the optimal
individual and its genes are assumed to codify the solution of
the minimization problem.
3. Results

We organize this section into three subsections. First, we some-
what optimize the GA parameters NI and NG for this particular
implementation. Then, we consider the isothermal problem
(namely, with a wall temperature just behind the step identical
to the cooling temperature) depending on just one parameter,
the Reynolds number. Finally, Section 3.3 deals the nonisothermal
problem depending on two parameters, namely the Reynolds num-
ber and the wall temperature.

3.1. Calibrating the genetic algorithm

Let us look for ‘optimal’ values of the two GA operational
parameters that were kept free in Section 2.4, namely NI and NG.
Such selection will be done empirically in the isothermal case, con-
sidering eight combinations of snapshots and modes, namely

� 3 snapshots, at Re = 25, 325, and 475, and 3 modes.
� 4 snapshots, at Re = 25, 175, 325, and 475, and 4 modes.
� 5 snapshots, at Re = 25, 150, 200, 325, and 475, and 5 modes.
� 10 snapshots, at Re = 25, 75, 125, 175, 225, 275, 325, 375, 425,

and 475, and either 5 or 10 modes.
� 15 snapshots, at Re = 25, 50, 75, 125, 150, 175, 200, 225, 275,

300, 325, 350, 375, 425, 450, and 475, and either 5, 10, or 15
modes.

By number of modes we mean hereafter the number n of POD
modes we are retaining in each flow variable, the total number
of mode amplitudes being m ¼ 4� n. As test cases to check results
in GA calibration, we consider those for Re = 100, 250, and 400. The
calculation has been performed for all combinations of values of
the parameters that result from the values NI ¼ 5000;10;000;
and 15;000 and NG ¼ 200;400;600;800; and 1000.

This calibration produces the values NI ¼ 5000 and NG ¼ 1000
as ‘optimal’. We have checked that it gives good results in the non-
isothermal case too.
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3.2. Results for the isothermal case

In the isothermal case, we intend to describe the steady state of
the system for varying Reynolds number in the range
50 6 Re 6 500. The results below will be checked in three test
points, for Re = 100, 325, and 450, which show the following values
of the attachment length LR and the pressure drop PD:

� Test case #1 (Re = 100): LR ¼ 1:40, PD ¼ 2:66.
� Test case #2 (Re = 325): LR ¼ 3:42, PD ¼ 0:56.
� Test case #3 (Re = 450): LR ¼ 4:24, PD ¼ 0:31.

As a first combination of snapshots, we consider seven equi-
spaced snapshots, namely

A: 7 snapshots, at Re = 50, 125, 200, 275, 350, 425, and 500.
After checking the results for the three test points above, it
turns out that the worse case is that for Re = 100; the
obtained values of LR and PD in this case are given in the first
row in Tables 1 and 2, respectively, where the SVD initial val-
ues are also indicated in parenthesis. These results indicate
that retaining five modes provides reasonable results, namely
within 4% in LR and within 2% in PD. This is not bad, since
only required 7 snapshots. But a question arises on whether
this result can be improved by a better selection of the snap-
shots. Since the results indicate that the low Reynolds num-
ber region requires a better approximation, we concentrate
the snapshots in this region. Three ad hoc combinations of
snapshots are considered, namely,
B: 6 snapshots, at Re = 50, 75, 150, 250, 350, and 500.
C: 7 snapshots, at Re = 50, 75, 125, 175, 250, 350, and 500.
D: 8 snapshots, at Re = 50, 75, 125, 175, 225, 300, 400, and 500.

Results for the four combinations are given in Tables 1 and 2,
where we can see that combination B with five modes significantly
improves the results obtained with combination A, namely both LR

and PD are now approximated within 1.5%, which is in fact of the
order of the error in CFD; thus enlarging the number of snapshots
(combinations C and D) cannot provide better results, as can be
seen in Tables 1 and 2. The main conclusions are that (i) the GA
generally improves the initial SVD approximation, and (ii) if the
snapshots are selected appropriately, then the number of snap-
shots is not much larger than the number of required modes. The
Table 1
Attachment length in the isothermal case obtained by the GA at Re = 100 for the
various combinations of snapshots, A, B, C, and D, retaining 3, 4, or 5 POD modes; the
initial value obtained using SVD + interpolation is indicated in parenthesis. The CFD
value of the attachment length in this case is LR ¼ 1:40.

Attachment length 3 Modes 4 Modes 5 Modes

Combination A 1.50 (1.38) 1.46 (1.44) 1.46 (1.44)
Combination B 1.38 (1.40) 1.42 (1.42) 1.40 (1.38)
Combination C 1.40 (1.40) 1.42 (1.42) 1.40 (1.40)
Combination D 1.42 (1.40) 1.44 (1.42) 1.42 (1.40)

Table 2
As in Table 1 but giving the pressure drop instead of the attachment length. The CFD
value is PD ¼ 2:70.

Pressure drop 3 Modes 4 Modes 5 Modes

Combination A 2.76 (3.06) 2.76 (3.06) 2.76 (3.06)
Combination B 2.74 (2.48) 2.74 (2.48) 2.67 (2.48)
Combination C 2.75 (2.60) 2.70 (2.60) 2.70 (2.60)
Combination D 2.73 (2.60) 2.70 (2.60) 2.70 (2.60)
latter is consistent with the fact that determining a n-dimensional
linear manifold should only require to impose that it passes
through n linearly independent points.

Now, combination B with five snapshots also provides a quite
good approximation of the velocity and pressure fields. Errors
are within 1.1% for horizontal velocity and pressure; errors for
the vertical velocity are larger, of the order of 4.2% as expected
noting that we are talking about relative errors and the absolute
value of the vertical velocity is somewhat small. The associated
streamlines and isobars for the three test cases are plotted with
dashed lines in Fig. 2, where for comparison their counterparts
obtained from CFD are also plotted with solid lines. Note that er-
rors in isobars are large in some regions, but this is just a geo-
metrical artifact of plotting contours of almost constant
functions. In order to illustrate that, we plot in Fig.3 two sections
(at constant x) of the pressure profiles in the regions where iso-
bars show largest errors.

3.3. Results for the nonisothermal case

We shall consider the parameter range 0 6 Re 6 250 and
0 6 Twall

6 1. Note that (in comparison with the isothermal case)
we have shortened the range in the Reynolds number. This has
been done to avoid more complex (multi-recirculation bubble)
flow topologies, which are more easily triggered in nonisothermal
conditions. We consider five test cases, at various combinations of
the Reynolds number and the wall temperature, which show the
indicated values of the attachment length LR, the pressure drop
PD, and the Nusselt number Nu, namely

� Test case #4 (Re 75, Twall ¼ 0:125): LR ¼ 1:14, PD ¼ 3:71,
Nu = 0.68.

� Test case #5 (Re 75, Twall ¼ 0:875): LR ¼ 1:26, PD ¼ 3:58,
Nu = 4.48.

� Test case #6 (Re 175, Twall ¼ 0:375): LR ¼ 2:24, PD ¼ 1:38,
Nu = 2.47.

� Test case #7 (Re 225, Twall ¼ 0:125): LR ¼ 2:64, PD ¼ 1:00,
Nu = 1.03.

� Test case #8 (Re 225, Twall ¼ 0:875): LR ¼ 2:76, PD ¼ 0:98,
Nu = 6.15.

The following combination of snapshots will be used:

E: 9 snapshots, at all combinations of Re = 50, 150, and 250, and
Twall ¼ 0;0:5; and 1.

Now, as in the isothermal case, we have applied both
SVD + interpolation and POD + GA to reconstruct the solution in
the test cases #4–#8. It turns out that the largest absolute errors
are obtained for the test case #4, while the largest relative errors
correspond to test cases #7 and #8; the calculated values using
POD + GA of the attachment length, pressure drop, and Nusselt
numbers for these three points are

� Test case #4: LR ¼ 1:00ð1:04Þ, PD ¼ 3:78ð4:54Þ, Nu ¼ 0:61ð0:62Þ,
� Test case #7: LR ¼ 2:68ð2:62Þ, PD ¼ 0:88ð1:01Þ, Nu ¼ 0:87ð0:88Þ,
� Test case #8: LR ¼ 2:78ð2:76Þ, PD ¼ 1:03ð0:98Þ, Nu ¼ 6:15ð6:16Þ,

where the reconstructed values using SVD + interpolation are also
given in parenthesis. A comparison with the CFD values given
above shows that the SVD results are generally improved signifi-
cantly. Also, we can see that the results are surprisingly good, given
the few number of snapshots we have used, namely only three val-
ues of the temperature and three values of the Reynolds number to
cover a part of the parameter plane, in which the flow characteris-
tics vary significantly. For illustration, we plot with dashed lines in



Fig. 2. Streamlines (left) and isobars (right) for the isothermal test cases #1 (up), #2 (middle), and #3 (down) as provided by CFD (—) and the method in this paper using
combination B of snapshots, with 5 modes (---). For convenience, only a part of that fluid domain corresponding to 4 < x < 10 is considered.
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Fig. 4 the streamlines and isotherms for the test cases #4–#8; their
counterparts obtained by CFD are also plotted with solid lines for
comparison. Isobars are similar to those of the isothermal case.
Again, large deviations are observed in isotherms in those regions
where temperature is almost constant, but this is again an artifact
of plotting contours of an almost constant function, as seen in
Fig. 5.

As in the isothermal case, we could look for new combinations
of snapshots that improve the (already good) result above, but it
turns out that in order to do that in an appropriate way, several
properties of the method (like non-equispaced selection of snap-
shots, or non-unit values of the weights assigned to each equation
and boundary condition in the definition of the residual) should be
improved, which is the object of our current research.

4. Concluding remarks

We have presented a method, based on POD and GA that pro-
vides a reduced order model to calculate the steady states of a
thermal system for varying values of the parameters, at a reason-
able computational cost in a robust and flexible way. The main dif-
ferences with classical POD + Galerkin are that (i) instead of using a
Galerkin projection, we define a residual of the governing equa-
tions, which is obtained substituting the POD expansions into the
governing equations and boundary conditions, squaring, and inte-
grating in a part of the fluid domain; and (ii) the residual is mini-
mized using a genetic algorithm.

Some remarks concerning the method are in order:

(1) In usual POD + Galerkin approach, each POD mode is shared
by all physical variables (velocity components, pressure, and
temperature), which means that the amplitudes associated
with these physical quantities, a1

i ; . . . ; a4
i , all coincide. Our

approach is more flexible. It allows (a) to impose continuity
and boundary conditions (see remark 4 below), (b) to add
new equations and amplitudes to reduce the computational
cost, as we did in Section 2.3, and (c) to obtain better approx-
imations using the same information, namely with the same
number of snapshots, namely the number of required CFD
calculations. The price is that the number of amplitudes
increases, but this has generally a smaller impact in the
overall computational cost.



Fig. 3. Pressure profiles vs. the vertical coordinate at the section x ¼ 7 for test case #1
(upper curves) and at x ¼ 8:5 for test case #2 (lower curves), as provided by CFD (—)
and the method in this paper using combination B of snapshots, with 5 modes (---).

Fig. 4. Isotherms for the (nonisothermal) test cases #4 (up left), #5 (up right), #6 (middl
this paper (---).
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(2) Our results in Section 3 indicate that the required number of
snapshots can be decreased if they are chosen properly. Use-
ful methods to choose appropriate snapshots would produce
a major improvement of the method. The problem of course
is that not known procedure is available for a good a priori
selection of snapshots. If this were available, the method
could be improved dramatically when the number of param-
eters is large.

(3) In connection with the previous remark, we have imposed in
(20) that the number of modes in the various amplitudes all
coincide. Relaxing this (which has been imposed only for the
sake of clarity) is expected to decrease the required total
number of modes. For instance, Eq. (27) suggests that three
modes should be enough for the flow quantities l and j
(amplitudes a5

i and a6
i ).

(4) The residual to be minimized (see Eq. (28) above) includes
the continuity equation and the boundary conditions, which
in POD + Galerkin are all assumed to hold for all snapshots
(this in turn requires a somewhat artificial variable change
to make all boundary conditions linear and homogeneous).
But it is a fact that continuity equation is sometimes poorly
e left), #7 (middle right), and #8 (down) as provided by CFD (—) and the method in



Fig. 5. Temperature profiles vs. the vertical coordinate at section x ¼ 6 for test case
#7 (upper curves) and at section x ¼ 8:5 for test case #5 (lower curves), as provided
by CFD (—) and the method in this paper using combination F of snapshots, with 5
modes (---).
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satisfied by POD modes due to numerical errors. Improving
continuity and homogeneous boundary conditions is non-
sense in POD + Galerkin, while these are imposed in a natu-
ral way in our approach.

(5) The residual above can be defined in other ways, i.e.,
introducing weights (which should be calibrated for each
specific application) in the equations and boundary
conditions.

(6) We have only considered a part of the fluid domain, namely
X defined in Eq. (16), to calculate the residual. This has been
done because:

� On the one hand, it is by no means necessary to consider

the whole fluid domain. A region containing the recircu-
lation bubble seems to be a good selection.

� If the whole fluid domain is considered the quality of the
residual may worsen due to the fact that redundant infor-
mation musks the relevant information.

� If the (numerically calculated) snapshots show localized
errors in some regions of the fluid domain, then these
regions must be avoided when defining the working
domain, as we did above when we avoided that region
near the corner at the upper end of the step in the defini-
tion of X and a vicinity of the walls in the inlet section
when defining the contribution BC2 in Eq. (25).
(7) As in the standard POD + Galerkin approach, we could
expect (in principle) spurious solutions, namely solutions of the
reduced model that do not correspond to any solution of the origi-
nal problem. These have not been observed in our method, which
means that the global minimum of the residual seem to correspond
always to a physical solution, but this does not exclude that other
local minima are present that are unphysical. All these mean that
our method is robust, and furthermore it does not show the kind
of instabilities exhibited by Galerkin + POD.

(8) The residual has been minimized using a genetic algorithm,
which is quite robust but slow. Other minimizing methods
such as a steepest descend could be used, but these require
a good initial guess and should be used with care.

(9) After calibration, our method produces a solution in only
2–5% of the CPU time required to obtain a CFD solution.
Summarizing, several improvements of the method are readily
seen that are well beyond the scope of this paper. They are the ob-
ject of our current research.
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